SARS-CoV-2 spike protein induces brain pericyte immunoreactivity in absence of productive viral infection

Author:

Khaddaj-Mallat RayanORCID,Aldib Natija,Paquette Anne-Sophie,Ferreira Aymeric,Lecordier Sarah,Bernard Maxime,Saghatelyan ArmenORCID,ElAli AymanORCID

Abstract

AbstractCOVID-19 is a respiratory disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). COVID-19 pathogenesis causes vascular-mediated neurological disorders via still elusive mechanisms. SARS-CoV-2 infects host cells by binding to angiotensin-converting enzyme 2 (ACE2), a transmembrane receptor that recognizes the viral spike (S) protein. Brain pericytes were recently shown to express ACE2 at the neurovascular interface, outlining their possible implication in microvasculature injury in COVID-19. Yet, pericyte responses to SARS-CoV-2 is still to be fully elucidated. Using cell-based assays, we report that ACE2 expression in human brain vascular pericytes is highly dynamic and is increased upon S protein stimulation. Pericytes exposed to S protein underwent profound phenotypic changes translated by increased expression of contractile and myofibrogenic proteins, namely α-smooth muscle actin (α-SMA), fibronectin, collagen I, and neurogenic locus notch homolog protein-3 (NOTCH3). These changes were associated to an altered intracellular calcium (Ca2+) dynamic. Furthermore, S protein induced lipid peroxidation, oxidative and nitrosative stress in pericytes as well as triggered an immune reaction translated by activation of nuclear factor-kappa-B (NF-κB) signalling pathway, which was potentiated by hypoxia, a condition associated to vascular comorbidities, which exacerbate COVID-19 pathogenesis. S protein exposure combined to hypoxia enhanced the production of pro-inflammatory cytokines involved in immune cell activation and trafficking, namely interleukin-8 (IL-8), IL-18, macrophage migration inhibitory factor (MIF), and stromal cell-derived factor-1 (SDF-1). Finally, we found that S protein could reach the mouse brain via the intranasal route and that reactive ACE2-expressing pericytes are recruited to the damaged tissue undergoing fibrotic scarring in a mouse model of cerebral multifocal micro-occlusions, a main reported vascular-mediated neurological condition associated to COVID-19. Our data demonstrate that the released S protein is sufficient to mediate pericyte immunoreactivity, which may contribute to microvasculature injury in absence of a productive viral infection. Our study provides a better understanding for the possible mechanisms underlying cerebrovascular disorders in COVID-19, paving the way to develop new therapeutic interventions.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3