Reconstitution of prenyltransferase activity on nanodiscs by components of the rubber synthesis machinery of the Para rubber tree and guayule

Author:

Kuroiwa Fu,Nishino Akira,Mandal Yasuko,Suenaga-Hiromori Miki,Suzuki Kakeru,Takani Yukie,Miyagi-Inoue Yukino,Yamaguchi Haruhiko,Yamashita Satoshi,Takahashi Seiji,Tozawa YuzuruORCID

Abstract

AbstractPrenyltransferases mediate the biosynthesis of various types of polyisoprene compound in living organisms. Natural rubber (NR) of the Para rubber tree (Hevea brasiliensis) is synthesized as a result of prenyltransferase activity, with the proteins HRT1, HRT2, and HRBP having been identified as candidate components of the rubber biosynthetic machinery. To clarify the contribution of these proteins to prenyltransferase activity, we established a cell-free translation system for nanodisc-based protein reconstitution and measured the enzyme activity of the protein-nanodisc complexes. Cell-free synthesis of HRT1, HRT2, and HRBP in the presence of asolectin nanodiscs revealed that all three proteins were membrane associated. A complex of HRT1 and HRBP formed as a result of co-expression of the two proteins in the presence of nanodiscs manifested marked polyisoprene synthesis activity, whereas neither HRT1, HRT2, or HRBP alone nor a complex of HRT2 and HRBP exhibited such activity. Similar analysis of guayule (Parthenium argentatum) proteins revealed that three HRT1 homologs (CPT1–3) manifested prenyltransferease activity only if co-expressed with the homolog of HRBP (CBP). Our results thus indicate that the core prenyltransferase of the rubber biosynthetic machinery of both the Para rubber tree and guayule is formed by the assembly of heterologous subunits (HRT1 and HRBP in the former species).

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3