Cell layer-specific expression of the B-class MADS-box genePhDEFdrives petal tube or limb development in petunia flowers

Author:

Chopy M.,Cavallini-Speisser Q.,Chambrier P.ORCID,Morel P.,Just J.ORCID,Hugouvieux V.,Rodrigues Bento S.,Zubieta C.ORCID,Vandenbussche M.ORCID,Monniaux M.ORCID

Abstract

ABSTRACTFloral homeotic MADS-box transcription factors ensure the correct development of floral organs with all their mature features, i.e. organ shape, size, colour and cellular identity. Furthermore, all plant organs develop from clonally-independent cell layers, deriving from the meristematic epidermal (L1) and internal (L2 and L3) layers. How cells from these distinct layers acquire their floral identities and coordinate their growth to ensure reproducible organ development is unclear. Here we study the development of thePetunia x hybrida(petunia) corolla, which consists of five fused petals forming a tube and pigmented limbs. We present petunia flowers expressing the B-class MADS-box genePhDEFin the epidermis or in the mesophyll of the petal only, that we called wico and star respectively. Strikingly, the wico flowers form a very small tube while their limbs are almost normal, and the star flowers form a normal tube but very reduced and unpigmented limbs. Therefore, the star and wico phenotypes indicate that in the petunia petal, the epidermis mainly drives limb growth and pigmentation while the mesophyll mainly drives tube growth. As a first step towards the identification of candidate genes involved in specification of petal layer identities and tube/limb development, we sequenced the star and wico whole petal transcriptome at three developmental stages. Among downregulated genes in star petals, we found the major regulator of anthocyanin biosynthesisANTHOCYANIN 1 (AN1), and we showed that,in vitro, PhDEF directly binds to its terminator sequence, suggesting that it might regulate its expression. Altogether this study shows that layer-specific expression ofPhDEFdrives petunia tube or limb development in a highly modular fashion, which adds an extra layer of complexity to the petal development process.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3