Abstract
AbstractDividing cells detect and correct erroneous kinetochore-microtubule attachments during mitosis, thereby avoiding chromosome mis-segregation. Most studies of this process have focused on the Aurora B kinase, which phosphorylates microtubule-binding elements specifically at incorrectly attached kinetochores, promoting their release and providing another chance for proper attachments to form. However, growing evidence suggests additional mechanisms, potentially involving Mps1 kinase, that also underlie error correction. Because these mechanisms overlap in vivo, and because both Mps1 and Aurora B function in numerous other vital processes, their contributions to the correction of erroneous kinetochore attachments have been difficult to disentangle. Here we directly examine how Mps1 activity affects kinetochore-microtubule attachments using a reconstitution-based approach that allowed us to separate its effects from Aurora B activity. When endogenous Mps1 that co-purifies with isolated kinetochores is activated in vitro, it weakens their attachments to microtubules via phosphorylation of Ndc80, a major microtubule-binding element of the outer kinetochore. Mps1 phosphorylation of Ndc80 appears to contribute to error correction because phospho-deficient Ndc80 mutants exhibit genetic interactions and segregation defects when combined with mutants in an intrinsic error correction pathway. In addition, Mps1 phosphorylation of Ndc80 is stimulated on kinetochores lacking tension. These data suggest that Mps1 provides an additional mechanism for correcting erroneous kinetochore-microtubule attachments, complementing the well-known activity of Aurora B.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献