Crafting for a better MAGIC: systematic design and test for multiparental advanced generation inter-cross population

Author:

Yang Chin Jian,Edmondson Rodney N.,Piepho Hans-Peter,Powell Wayne,Mackay Ian

Abstract

AbstractMultiparental advanced generation inter-cross (MAGIC) populations are valuable crop resources with a wide array of research uses including genetic mapping of complex traits, management of genetic resources and breeding of new varieties. Multiple founders are crossed to create a rich mosaic of highly recombined founder genomes in the MAGIC recombinant inbred lines (RILs). Many variations of MAGIC population designs exist; however, a large proportion of the currently available populations have been created empirically and based on similar designs. In our evaluations of five MAGIC populations, we found that the choice of designs has a large impact on the recombination landscape in the RILs. The most popular design used in many MAGIC populations has been shown to have a bias in recombinant haplotypes and low level of unique recombinant haplotypes, and therefore is not recommended. To address this problem and provide a remedy for the future, we have developed the “magicdesign” R package for creating and testing any MAGIC population design via simulation. A Shiny app version of the package is available as well. Our “magicdesign” package provides a unifying tool and a framework for creativity and innovation in MAGIC population designs. For example, using this package, we demonstrate that MAGIC population designs can be found which are very effective in creating haplotype diversity without the requirement for very large crossing programmes. Further, we show that interspersing cycles of crossing with cycles of selfing is effective in increasing haplotype diversity. These approaches are applicable in species which are hard to cross or in which resources are limited.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3