TheBrachypodium distachyoncold-acclimated plasma membrane proteome is primed for stress resistance

Author:

Juurakko Collin L.,Bredow Melissa,Nakayama Takato,Imai Hiroyuki,Kawamura Yukio,diCenzo George C.ORCID,Uemura Matsuo,Walker Virginia K.

Abstract

ABSTRACTIn order to survive sub-zero temperatures, some plants undergo cold acclimation where low, non-freezing temperatures and/or shortened day lengths allow cold hardening and survival during subsequent freeze events. Central to this response is the plasma membrane, where low-temperature is perceived and cellular homeostasis must be preserved by maintaining membrane integrity. Here, we present the first plasma membrane proteome of cold-acclimatedBrachypodium distachyon, a model species for the study of monocot crops. A time course experiment investigated cold acclimation-induced changes in the proteome following two-phase partitioning plasma membrane enrichment and label-free quantification by nano-liquid chromatography mass spectrophotometry. Two days of cold acclimation were sufficient for membrane protection as well as an initial increase in sugar levels, and coincided with a significant change in the abundance of 154 proteins. Prolonged cold acclimation resulted in further increases in soluble sugars and abundance changes in more than 680 proteins, suggesting both a necessary early response to low-temperature treatment, as well as a sustained cold acclimation response elicited over several days. A meta-analysis revealed that the identified plasma membrane proteins have known roles in low-temperature tolerance, metabolism, transport, and pathogen defense as well as drought, osmotic stress and salt resistance suggesting crosstalk between stress responses, such that cold acclimation may prime plants for other abiotic and biotic stresses. The plasma membrane proteins identified here present keys to an understanding of cold tolerance in monocot crops and the hope of addressing economic losses associated with modern climate-mediated increases in frost events.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3