Abstract
AbstractAdaptive myelination has been reported in response to experimental manipulations of neuronal activity, but the links between sensory experience, corresponding neuronal activity, and resultant alterations in myelination require investigation. To study this, we used theXenopus laevistadpole, which is a classic model for studies of visual system development and function because it is translucent and visually responsive throughout the formation of this retinotectal system. Here, we report the timecourse of early myelin ensheathment in theXenopusretinotectal system using immunohistochemistry of myelin basic protein (MBP) along with third-harmonic generation (THG) microscopy, a label-free structural imaging technique. Characterization of the myelination progression revealed an appropriate developmental window to address the effects of early patterned visual experience on myelin ensheathment. To alter patterned activity, we showed tadpoles stroboscopic stimuli and measured the calcium responses of retinal ganglion cell axon terminals. We identified strobe frequencies that elicited robust versus dampened calcium responses, reared animals in these strobe conditions for 7 d, and subsequently observed differences in the amount of early myelin ensheathment at the optic chiasm. This study provides evidence that it is not just the presence but also to the specific temporal properties of sensory stimuli that are important for myelin plasticity.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献