A data-driven pipeline to extract potential side effects through co-prescription analysis: application to a cohort study of 2,010 patients taking hydroxychloroquine with an 11-year follow-up

Author:

Sabatier P.,Wack M.,Pouchot J.,Danchin N.,Jannot AS.

Abstract

ABSTRACTContextReal-life data consist of exhaustive and unbiased data to study drug-safety profiles but are underused because of their complex temporality (i.e., safety depends on the dose, timing, and duration of treatment) and the considerable number of potential side effects to study. We aimed to create a pipeline that manages the complex temporality of real-life data using a data-driven strategy (i.e., without any hypothesis on the potential side effects to search for) to highlight the safety profile of a given drug. We used hydroxychloroquine (HCQ) and its co-prescription in a real-life database to illustrate this pipeline.MethodsWe incorporated a weighted cumulative exposure statistical model into a data-driven strategy. This pipeline makes it possible to highlight both long-term and short-term side effects, while avoiding false positives due to the natural course of the underlying disease. We applied the proposed pipeline to a cohort of 2,010 patients with a prescription of HCQ and used their drug prescription as the source of data to highlight the HCQ safety profile.ResultsThe proposed pipeline introduces a bootstrap strategy into weighted cumulative-exposure statistics estimates to highlight significant drug signals. As applied to HCQ, the proposed pipeline showed nine drugs to be significantly associated with HCQ exposure. Of note, one of them has therapeutic indications for known HCQ side effects. Other associations could be explained by therapeutic indications linked to conditions associated with HCQ indications in France.ConclusionWe propose a data-driven pipeline that makes it possible to provide a broad picture of the side effects of a given drug. It would be informative to pursue the development of this pipeline using other sources of data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3