Transcriptomic stability or lability explains sensitivity to climate stressors in coralline algae

Author:

Page Tessa M.ORCID,McDougall CarmelORCID,Bar IdoORCID,Diaz-Pulido GuillermoORCID

Abstract

AbstractCrustose coralline algae (CCA) are a group of calcifying red macroalgae crucial to tropical coral reefs because they form crusts that cement together the reef framework1. Previous research into the responses of CCA to ocean warming (OW) and ocean acidification (OA) have found reductions in calcification rates and survival2,3, with magnitude of effect being species-specific. Responses of CCA to OW and OA could be linked to evolutionary divergence time and/or their underlying molecular biology, the role of either being unknown in CCA. Here we show Sporolithon durum, a species from an earlier diverged lineage that exhibits low sensitivity to climate stressors, had little change in metabolic performance and did not significantly alter the expression of any genes when exposed to temperature and pH perturbations. In contrast, Porolithon onkodes, a species from a recently diverged lineage, reduced photosynthetic rates and had over 400 significantly differentially expressed genes in response to experimental treatments, with differential regulation of genes relating to physiological processes. We suggest earlier diverged CCA may be resistant to OW and OA conditions predicted for 2100, whereas taxa from more recently diverged lineages with demonstrated high sensitivity to climate stressors may have limited ability for acclimatisation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3