Soil, ocean, hot spring, and host-associated environments reveal unique selection pressures on genomic features of bacteria in microbial communities

Author:

Chuckran Peter F.ORCID,Hungate BruceORCID,Schwartz Egbert,Dijkstra PaulORCID

Abstract

ABSTRACTFree-living bacteria in nutrient limited environments often exhibit small genomes which curb the cost of reproduction – a phenomenon known as genomic streamlining. Streamlining has been associated with a suite of traits such as reduced GC content, fewer 16S rRNA copies, and a lower abundance of regulatory genes, such as sigma (σ) factors. Here, we analyzed these traits from 116 publicly available metagenomes derived from marine, soil, host associated, and thermophilic communities. In marine and thermophilic communities, genome size and GC content declined in parallel, but GC content was higher in thermophilic communities. In soils, the relationship between genome size and GC content was negative, suggesting a different selection pressure on genome size and GC content in soil bacteria. The abundance of σ-factors varied with average genome size, ecosystem type, and the specific functions regulated by the sigma factor. In marine environments, housekeeping and heat-shock σ-factor genes (rpoD and rpoH respectively) increased as genome size declined, and σ-factor responsible for flagella biosynthesis (fliA) decreased, suggesting a trade-off between nutrient conservation and chemotaxis. In soils, a high abundance of fliA and the stress response σ-factor gene (rpoS) was associated with smaller average genome size and often located in harsh and/or carbon-limited environments such as deserts or agricultural fields – suggesting an increased capacity for stress response and mobility in nutrient-poor soils. This work showcases how ecosystem-specific environmental constraints force trade-offs which are then embedded in the genomic features of bacteria in microbial communities, specifically genome size, GC content, and regulatory genes, and further highlights the importance of considering these features in microbial community analysis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3