Author:
Namba Masumi,Kobayashi Tomoe,Kohno Mayumi,Koyano Takayuki,Hirose Takuo,Fukushima Masaki,Matsuyama Makoto
Abstract
SummaryAlport syndrome is an inherited chronic human kidney disease, characterized by glomerular basement membrane abnormalities. This disease is caused by mutations in COL4A3, COL4A4, or COL4A5 gene. The knockout mice for Col4α3, Col4α4, and Col4α5 are developed and well characterized for the study of Alport syndrome. However, disease progression and effects of pharmacological therapy depend on the genetic variability. This model is reliable only to mice. Therefore in this study, we created a novel Alport syndrome rat model utilizing rGONAD technology. Col4α5 deficient rats showed hematuria, proteinuria, high levels of BUN, Cre, and then died at 18 to 28 weeks of age (Hemizygous mutant males). Histological and ultrastructural analyses displayed the abnormalities including parietal cell hyperplasia, mesangial sclerosis, and interstitial fibrosis. Then, we demonstrated that α3/α4/α5 (IV) and α5/α5/α6 (IV) chains of type IV collagen disrupted in the Col4α5 deficient rats. Moreover, immunofluorescence analyses revealed that some glomeruli of Col4α5 mutant rats were found to be disrupted from postnatal day 0. Thus, Col4α5 mutant rat is a reliable candidate for Alport syndrome model for underlying the mechanism of renal diseases and further identifying potential therapeutic targets for human renal diseases.
Publisher
Cold Spring Harbor Laboratory