Spatio-temporal analysis and prediction of malaria cases using remote sensing meteorological data in Diébougou health district, Burkina Faso, 2016-2017

Author:

Bationo Cédric S.ORCID,Gaudart JeanORCID,Dieng SokhnaORCID,Cissoko MadyORCID,Taconet PaulORCID,Ouedraogo BoukaryORCID,Somé AnthonyORCID,Zongo IssakaORCID,Soma Dieudonné D.ORCID,Tougri Gauthier,Dabiré Roch K.ORCID,Koffi Alphonsine,Pennetier CédricORCID,Moiroux NicolasORCID

Abstract

AbstractBackgroundMalaria control and prevention programs are more efficient and cost-effective when they target hotspots or select the best periods of year to implement interventions. This study aimed to identify the spatial distribution of malaria hotspots at the village level in Diébougou health district, Burkina Faso, and to model the temporal dynamics of malaria cases as a function of meteorological conditions and of the distance between villages and health centers (HCs).MethodsCase data for 27 villages were collected in 13 HCs using continuous passive case detection. Meteorological data were obtained through remote sensing. Two synthetic meteorological indicators (SMIs) were created to summarize meteorological variables. Spatial hotspots were detected using the Kulldorf scanning method. A General Additive Model was used to determine the time lag between cases and SMIs and to evaluate the effect of SMIs and distance to HC on the temporal evolution of malaria cases. The multivariate model was fitted with data from the epidemic year to predict the number of cases in the following outbreak.ResultsOverall, the incidence rate in the area was 429.13 cases per 1,000 person-year with important spatial and temporal heterogeneities. Four spatial hotspots, involving 7 of the 27 villages, were detected, for an incidence rate of 854.02 cases per 1,000 person-year. The hotspot with the highest risk (relative risk = 4.06) consisted of a single village, with an incidence rate of 1,750.75 cases per 1,000 person-years. The multivariate analysis found greater variability in incidence between HCs than between villages linked to the same HC. The epidemic year was characterized by a major peak during the second part of the rainy season and a secondary peak during the dry-hot season. The time lag that generated the better predictions of cases was 9 weeks for SMI1 (positively correlated with precipitation variables and associated with the first peak of cases) and 16 weeks for SMI2 (positively correlated with temperature variables and associated with the secondary peak of cases). Euclidian distance to HC was not found to be a predictor of malaria cases recorded in HC. The prediction followed the overall pattern of the time series of reported cases and predicted the onset of the following outbreak with a precision of less than 3 weeks.ConclusionsOur spatio-temporal analysis of malaria cases in Diébougou health district, Burkina Faso, provides a powerful prospective method for identifying and predicting high-risk areas and high-transmission periods that could be targeted in future malaria control and prevention campaigns.

Publisher

Cold Spring Harbor Laboratory

Reference68 articles.

1. Rapport sur le paludisme dans le monde 2019, OMS (Accessible à: https://www.who.int/malaria/publications/world-malaria-report-2019/report/fr. Date d’accès: 06 Mars 2020).

2. Annuaire statistique 2015 Ministère de la santé du Burkina Faso (Accessible à: http://cns.bf/IMG/pdf/annuaire_ms_2015_signe.pdf. Date d’accès: 06 Janvier 2020).

3. Enquête sur les Indicateurs du Paludisme (EIPBF) 2014, Institut National de la Statistique et de la Démographie Ouagadougou, Burkina Faso. (Accessible à: https://dhsprogram.com/pubs/pdf/MIS19/MIS19.pdf. Date d’accès: 06 Janvier 2020).

4. Directives nationales pour la prise en charge du paludisme dans les formations sanitaires du Burkina Faso.2010, Ministère de la santé. (Accessible à: http://pdf.usaid.gov/pdf_docs/PA00JPHB.pdf. Date d’accès: 13 Mars 2018).

5. Campagne de distribution universelle de MILDA dans le district sanitaire de Diébougou au Burkina Faso. 2009, Rapport Technique, Ouagadougou, Ministère de la Sante, Burkina Faso

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3