Resistance training rejuvenates the mitochondrial methylome in aged human skeletal muscle

Author:

Ruple Bradley A.,Godwin Joshua S.,Mesquita Paulo H. C.,Osburn Shelby C.,Vann Christopher G.,Lamb Donald A.,Sexton Casey L.,Candow Darren G.,Forbes Scott C.,Frugé Andrew D.,Kavazis Andreas N.,Young Kaelin C.,Seaborne Robert A.,Sharples Adam P.,Roberts Michael D.

Abstract

ABSTRACTResistance training (RT) alters skeletal muscle nuclear DNA methylation patterns (or the methylome). However, no study has examined if RT affects the mitochondrial DNA (mtDNA) methylome. Herein, ten older untrained males (65±7 years old) performed six weeks of full-body RT (twice weekly). Body composition and knee extensor torque were assessed prior to and 72 hours following the last RT session. Vastus lateralis (VL) biopsies were also obtained. VL DNA was subjected to reduced representation bisulfite sequencing providing excellent coverage across the ~16-kilobase mtDNA methylome (254 CpG sites). Various biochemical assays were also performed, and older male data were compared to younger trained males (22±2 years old, n=7). RT increased whole-body lean tissue mass (p=0.017), VL thickness (p=0.012), and knee extensor torque (p=0.029) in older males. RT also profoundly affected the mtDNA methylome in older males, as 63% (159/254) of the CpG sites demonstrated reduced methylation (p<0.05). Notably, several mtDNA sites presented a more “youthful” signature after RT in older males when comparisons were made to younger males. The 1.12 kilobase D-loop/control region on mtDNA, which regulates mtDNA replication and transcription, possessed enriched hypomethylation in older males following RT. Enhanced expression of mitochondrial H- and L-strand genes and increases in mitochondrial complex III and IV protein levels were also observed (p<0.05). This is the first study to show RT alters the mtDNA methylome in skeletal muscle. Observed methylome alterations may enhance mitochondrial transcription, and RT remarkably evokes mitochondrial methylome profiles to mimic a more youthful signature in older males.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3