Author:
Hicks Steven A.,Strümke Inga,Thambawita Vajira,Hammou Malek,Riegler Michael A.,Halvorsen Pål,Parasa Sravanthi
Abstract
ABSTRACTClinicians and model developers need to understand how proposed machine learning (ML) models could improve patient care. In fact, no single metric captures all the desirable properties of a model and several metrics are typically reported to summarize a model’s performance. Unfortunately, these measures are not easily understandable by many clinicians. Moreover, comparison of models across studies in an objective manner is challenging, and no tool exists to compare models using the same performance metrics. This paper looks at previous ML studies done in gastroenterology, provides an explanation of what different metrics mean in the context of the presented studies, and gives a thorough explanation of how different metrics should be interpreted. We also release an open source web-based tool that may be used to aid in calculating the most relevant metrics presented in this paper so that other researchers and clinicians may easily incorporate them into their research.
Publisher
Cold Spring Harbor Laboratory
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献