An ecological niche model to predict the geographic distribution of Haemagogus janthinomys, Dyar, 1921 the yellow fever and Mayaro virus vector, in South America

Author:

Celone Michael,Pecor David,Potter Alexander,Richardson Alec,Dunford James,Pollet Simon

Abstract

AbstractYellow fever virus (YFV) has a long history of impacting human health in South America. Mayaro virus (MAYV) is an emerging arbovirus of public health concern in the Neotropics and its full impact is yet unknown. Both YFV and MAYV are primarily maintained via a sylvatic transmission cycle but can be opportunistically transmitted to humans by the bites of infected forest dwelling Haemagogus janthinomys Dyar, 1921. To better understand the potential risk of YFV and MAYV transmission to humans, a more detailed understanding of this vector species’ distribution is critical. This study compiled a comprehensive database of 170 unique Hg. janthinomys collection sites retrieved from the published literature, digitized museum specimens and publicly accessible mosquito surveillance data. Covariate analysis was performed to optimize a selection of environmental (topographic and bioclimatic) variables associated with predicting habitat suitability, and species distributions modelled across South America using a maximum entropy (MaxEnt) approach. Our results indicate that suitable habitat for Hg. janthinomys can be found across forested regions of South America including the Atlantic forests and interior Amazon.Author SummaryMayaro virus is a neglected tropical disease and there is insufficient evidence to define its geographic range. The mosquito Haemagogus janthinomys is a primary vector of Mayaro and its distribution is largely unknown at a sub-country scale. Building compendiums of collection data and creating ecological niche models provides a more precise estimation vector species potential habitat. Our dataset stands as one of the most expansive existing for collection data of this species combining data published in literature, publicly available data repositories and digitized museum specimen records. Comparing results of niche models with near real time environmental data can give even better predictions of areas where Mayaro virus exposure could occur. The methods and results of this study can be replicated for any disease/vector of interest so long as there is data discoverable through the scientific literature, public repositories, or other civilian and governmental agencies willing to share.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3