After-hyperpolarization promotes the firing of mitral cells through a voltage dependent modification of action potential threshold

Author:

Nicolas Fourcaud-TrocméORCID,Mickaël ZbiliORCID,Patricia Duchamp-ViretORCID,Nicola KuczewskiORCID

Abstract

AbstractIn the olfactory bulb (OB), mitral cells (MCs) display a spontaneous firing that is characterized by bursts of action potentials intermixed with silent periods. Burst firing frequency and duration are heterogeneous among MCs and increase with membrane depolarization. By using patch clamp recording on rat slices, we dissected out the intrinsic properties responsible of this activity. We showed that the threshold of action potential (AP) generation dynamically changes as a function of the trajectory of the membrane potential; becoming more negative when the membrane was hyperpolarized and having a recovering rate, inversely proportional to the membrane repolarization rate. Such variations appeared to be produced by changes in the inactivation state of voltage dependent Na+ channels. Thus, the modification AP threshold favours the initiation of the burst following hyperpolarizing event such as negative membrane oscillations or inhibitory transmission. After the first AP, the following afterhyperpolarization (AHP) brought the threshold just below the membrane resting potential or within membrane oscillations and, as a consequence, the threshold was exceeded during the fast repolarization component of the AHP. In this way the fast AHP acts as a regenerative mechanism that sustains the firing. Bursts were stopped by the development of a slow repolarization component of the AHP. The AHP characteristics appeared as determining the bursting properties; AHP with larger amplitudes and faster repolarizations being associated with longer and higher frequency bursts. Thus, the increase of bursts length and frequency upon membrane depolarization would be attributable to the modifications of the AHP and of Na+ channels inactivation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3