Author:
Marklund Emil,Mao Guanzhong,Deindl Sebastian,Elf Johan
Abstract
AbstractSequence-specific binding of proteins to DNA is essential for accessing genetic information. Here, we derive a simple equation for target-site recognition, which uncovers a previously unrecognized coupling between the macroscopic association and dissociation rates of the searching protein. Importantly, this relationship makes it possible to recover the relevant microscopic rates from experimentally determined macroscopic ones. We directly test the equation by observing the binding and unbinding of individual lac repressor (LacI) molecules during target search. We find that LacI dissociates from different target sequences with essentially identical microscopic dissociation rates. Instead, sequence specificity is determined by the efficiency with which the protein recognizes different targets, effectively reducing its risk of being retained on a non-target sequence. Our theoretical framework also accounts for the coupling between off-target binding and unbinding of the catalytically inactive Cas9 (dCas9), showing that the binding pathway can be obtained from macroscopic data.One Sentence SummaryAssociation and dissociation rates are anti-correlated for reactions that include a nonspecific probing step.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献