Direct reconstitution and study of SUN protein interactions in vitro using mammalian cell-free expression

Author:

Majumder Sagardip,Hsu Yen-Yu,Andreas Michael,Giessen Tobias W.ORCID,Liu Allen P.ORCID

Abstract

AbstractSUN proteins are an integral part of LINC (Linker of Nucleoskeleton and Cytoskeleton) complex which spans the nuclear envelope and acts as a physical tether between the cytoskeletal filaments and the nuclear lamina. Several human diseases associated with nuclear deformation are primarily caused by impaired functioning of SUN proteins. Studies in yeast and mammalian cells have illustrated the detrimental effects of different SUN mutants in nuclear positioning and movement. While cell-based studies provide physiological relevance to the functioning of a protein, in vitro reconstitution of isolated proteins is useful in mechanistically dissecting protein function in a biochemically defined environment. In this study, we used a mammalian cell-free expression system to synthesize and reconstitute SUN proteins in artificial lipid bilayer membranes. Building on our previous work demonstrating directional reconstitution of full-length SUN proteins, we deciphered the mechanism of such protein reconstitution and leveraged it to test several theories/models of LINC complex assembly. By using a simple fluorescence-based assay, we revealed the importance of cations such as calcium and the presence of disulfide bonds in the formation of LINC complexes. Through sequential reconstitutions of SUN proteins and soluble luminal domains of SUN proteins, we found that coiled coil domains of SUN proteins are necessary for homomeric and heteromeric interactions of reconstituted SUN proteins. Overall, our results provide mechanistic insights on LINC complex formation and how this might impact cellular mechanotransduction. The facile approach for reconstituting full-length membrane proteins can be extended to investigate other difficult-to-study membrane proteins in vitro.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3