Transient induction of cell cycle promoter Fam64a improves cardiac function through regulating Klf15-dependent cardiomyocyte differentiation in mice

Author:

Hashimoto KenORCID,Kodama Aya,Ohira Momoko,Kimoto Misaki,Nakagawa ReikoORCID,Usui Yuu,Ujihara YoshihiroORCID,Hanashima Akira,Mohri Satoshi

Abstract

AbstractThe introduction of fetal or neonatal signatures such as cell cycle promoting genes into damaged adult hearts has been vigorously pursued as a promising strategy for stimulating proliferation and regeneration of adult cardiomyocytes, which normally cannot divide. However, cell division of cardiomyocytes requires preceding dedifferentiation with sarcomere disassembly and calcium dysregulation, which, in principle, compromises contractile function. To overcome this intrinsic dilemma, we explored the feasibility of optimizing the induction protocol of the cell cycle promoter in mice. As a model of this approach, we used Fam64a, a fetal-specific cardiomyocyte cell cycle promoter that we have recently identified. We first analyzed transgenic mice maintaining long-term cardiomyocyte-specific expression of Fam64a after birth, when endogenous expression was abolished. Despite having an enhanced proliferation of postnatal cardiomyocytes, these mice showed age-related cardiac dysfunction characterized by sustained cardiomyocyte dedifferentiation, which was reminiscent of the dilemma. Mechanistically, Fam64a inhibited glucocorticoid receptor-mediated transcriptional activation of Klf15, a key regulator that drives cardiomyocyte differentiation, thereby directing cardiomyocytes toward immature undifferentiated states. In contrast, transient induction of Fam64a in cryoinjured wildtype adult mice hearts improved functional recovery with augmented cell cycle activation of cardiomyocytes. These data indicate that optimizing the intensity and duration of the stimulant to avoid excessive cardiomyocyte dedifferentiation could pave the way toward developing efficient strategy for successful heart regeneration.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3