Suppression of aminoglycoside-induced premature termination codon readthrough by the TRP channel inhibitor AC1903

Author:

Baradaran-Heravi Alireza,Bauer Claudia C.,Pickles Isabelle B.,Hosseini-Farahabadi Sara,Balgi Aruna D.,Choi Kunho,Linley Deborah M.,Beech David J.,Roberge Michel,Bon Robin S.ORCID

Abstract

AbstractNonsense mutations, which occur in ~11% of patients with genetic disorders, introduce premature termination codons (PTCs) that lead to truncated proteins and promote nonsense-mediated mRNA decay. Aminoglycosides such as gentamicin and G418 permit PTC readthrough and so may address this problem. However, their effects are variable between patients, making clinical use of aminoglycosides challenging. In this study, we addressed the hypothesis that TRP non-selective cation channels contribute to the variable effect of aminoglycosides by controlling their cellular uptake. To attempt to identify the channel type involved, we tested AC1903, a 2-aminobenzimidazole derivative recently reported to selectively inhibit TRPC5 cation channels. AC1903 consistently suppressed G418 uptake and G418-induced PTC readthrough in the DMS-114 cell line and patient-derived JEB01 keratinocytes. In an effort to validate the suggested role of TRPC5, we tested an independent and more potent inhibitor called Pico145, which affects channels containing TRPC1, TRPC4 and TRPC5 but not other TRPCs or other channels. Unexpectedly, Pico145 was completely without effect, suggesting that AC1903 may work through other or additional targets. Consistent with this suggestion, AC1903 inhibited multiple TRPC channels including homomeric TRPC3, TRPC4, TRPC5, TRPC6 as well as concatemeric TRPC4–C1 and TRPC5–C1 channels, all with low micromolar IC50values. It also inhibited TRPV4 channels but had weak or no effects on TRPV1 and no effect on another non-selective cation channel, PIEZO1. Overall, our study reveals a suppressor of aminoglycoside-mediated PTC readthrough (i.e., AC1903) but suggests that this compound has previously unrecognised effects. These effects require further investigation to determine the molecular mechanism by which AC1903 suppresses aminoglycoside uptake and PTC readthrough.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3