Abstract
AbstractNonsense mutations, which occur in ~11% of patients with genetic disorders, introduce premature termination codons (PTCs) that lead to truncated proteins and promote nonsense-mediated mRNA decay. Aminoglycosides such as gentamicin and G418 permit PTC readthrough and so may address this problem. However, their effects are variable between patients, making clinical use of aminoglycosides challenging. In this study, we addressed the hypothesis that TRP non-selective cation channels contribute to the variable effect of aminoglycosides by controlling their cellular uptake. To attempt to identify the channel type involved, we tested AC1903, a 2-aminobenzimidazole derivative recently reported to selectively inhibit TRPC5 cation channels. AC1903 consistently suppressed G418 uptake and G418-induced PTC readthrough in the DMS-114 cell line and patient-derived JEB01 keratinocytes. In an effort to validate the suggested role of TRPC5, we tested an independent and more potent inhibitor called Pico145, which affects channels containing TRPC1, TRPC4 and TRPC5 but not other TRPCs or other channels. Unexpectedly, Pico145 was completely without effect, suggesting that AC1903 may work through other or additional targets. Consistent with this suggestion, AC1903 inhibited multiple TRPC channels including homomeric TRPC3, TRPC4, TRPC5, TRPC6 as well as concatemeric TRPC4–C1 and TRPC5–C1 channels, all with low micromolar IC50values. It also inhibited TRPV4 channels but had weak or no effects on TRPV1 and no effect on another non-selective cation channel, PIEZO1. Overall, our study reveals a suppressor of aminoglycoside-mediated PTC readthrough (i.e., AC1903) but suggests that this compound has previously unrecognised effects. These effects require further investigation to determine the molecular mechanism by which AC1903 suppresses aminoglycoside uptake and PTC readthrough.
Publisher
Cold Spring Harbor Laboratory