Changes in Cellular Crosstalk between Skeletal Muscle Myoblasts and Bone Osteoblasts with Aging

Author:

Doering Jonathan A.,Britt Carly E.,Sawicki Gregory S.ORCID,Cole Jacqueline H.ORCID

Abstract

AbstractMusculoskeletal function declines with aging, resulting in an increased incidence of trips and falls. Both bone and muscle experience age-related losses in tissue mass that alter their mechanical interactions in a well characterized manner, but changes in the biochemical interactions between bone and muscle with aging are not well understood. Of note, insulin-like growth factor 1 (IGF-1), a potent growth factor for bone and muscle, can be negatively altered with aging and may help explain losses in these tissues. We recently developed a co-culture system for simultaneous growth of bone mesenchymal stem cells (MSCs) and muscle satellite cells (SCs) to investigate the biochemical crosstalk between the two cell types. Here, we utilized an aging rat model to study cellular changes between young and old rat MSCs and SCs, in particular whether 1) young MSCs and SCs have increased proliferation and differentiation compared to old MSCs and SCs; 2) young cells have increased IGF-1 and collagen expression as a measure of crosstalk compared to old cells; and 3) young cells can mitigate the aging phenotype of old cells in co-culture. Rat MSCs and SCs were either mono- or co-cultured in Transwell® plates, grown to confluence, and allowed to differentiate for 14 days. Across the 14 days, cell proliferation was measured, with differentiation and crosstalk measurements evaluated at 14 days. The results suggest that in both young and old, proliferation is greater in mono-cultures compared to co-cultures, yet age and cell type did not have a significant effect. Differentiation did not differ between young and old cells, yet MSCs and SCs demonstrated the greatest amount of differentiation in co-culture. Finally, age, cell type, and culture type did not have a significant effect on collagen or IGF-1 expression. These results suggest co-culture may have a controlling effect, with the two cell types acting together to promote differentiation more than in mono-cultures, yet this response was not altered by age. In general, results for old cells had higher variability, suggesting a wider variety in the aging phenotypes demonstrated in these animals. This study was the first to use this rat aging model to investigate changes between bone and skeletal muscle cells, however further investigations are required to determine what signaling changes occur in response to age. Determining these signaling changes could lead to new targets for mitigating the progression of aging.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3