Structural basis for human T-cell leukemia virus type 1 Gag targeting to the plasma membrane for assembly

Author:

Herrmann Dominik,Zhou Lynne W.,Hanson Heather M.,Willkomm Nora A.,Mansky Louis M.ORCID,Saad Jamil S.ORCID

Abstract

ABSTRACTDuring the late phase of retroviral replication, the virally encoded Gag polyprotein is targeted to the plasma membrane (PM) for assembly. Gag–PM binding is mediated by the N-terminal matrix (MA) domain of Gag. For many retroviruses, Gag binding to the PM was found to be dependent on phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. However, it was shown that for human T-cell leukemia virus type 1 (HTLV-1), Gag binding to membranes is less dependent on PI(4,5)P2, suggesting that other factors may modulate Gag assembly. To elucidate the mechanism by which HTLV-1 Gag binds to the PM, we employed NMR techniques to solve the structure of unmyristoylated MA (myr(–)MA) and to characterize its interactions with lipids and liposomes. The MA structure consists of four α-helices and unstructured N- and C-termini. We show that myr(–)MA binds to PI(4,5)P2via the polar head and that myr(–)MA binding to inositol phosphates (IPs) is significantly enhanced by increasing the number of phosphate groups on the inositol ring, indicating that the MA–IP binding is governed by charge–charge interactions. The IP binding site was mapped to a well-defined basic patch formed by lysine and arginine residues. Using a sensitive NMR-based liposome binding assay, we show that myr(–)MA binding to membranes is significantly enhanced by phosphatidylserine (PS). Confocal microscopy data show that Gag is localized to the inner leaflet of the PM of infected cells, while the Gag G2A mutant, lacking myristoylation, is diffuse and cytoplasmic. These findings advance our understanding of a key mechanism in retroviral assembly.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3