Phenotypic diversity and sensitivity to injury of the pulmonary endothelium during a period of rapid postnatal growth

Author:

Zanini FabioORCID,Che Xibing,Knutsen CarstenORCID,Liu Min,Suresh Nina,Domingo-Gonzalez Racquel,Dou Steve H.,Jones Robert C.,Cornfield David N.ORCID,Quake Stephen R.ORCID,Alvira Cristina M.ORCID

Abstract

AbstractBackgroundEndothelial cells (EC) sit at the forefront of dramatic physiologic changes occurring in the pulmonary circulation during late embryonic and early postnatal life. First, as the lung moves from the hypoxic fetal environment to oxygen-rich postnatal environment, marked changes in pulmonary EC structure and function facilitate a marked increase in blood flow from the placenta to the lungs. Subsequently, pulmonary angiogenesis expands the microvasculature to drive exponential distal lung growth during early postnatal life. Yet, how these marked physiologic changes alter distinct EC subtypes to facilitate the transition of the pulmonary circulation and regulate vascular growth and remodeling remains incompletely understood.MethodsIn this report, we employed single cell RNA-transcriptomics and in situ RNA imaging to profile pulmonary EC in the developing mouse lung from just before birth through this period of rapid postnatal growth.ResultsMultiple, transcriptionally distinct macro- and microvascular EC were identified in the late embryonic and early postnatal lung, with gene expression profiles distinct from their adult EC counterparts. A novel arterial subtype, unique to the developing lung localized to the distal parenchyma and expressed genes that regulate vascular growth and patterning. Birth particularly heightened microvascular diversity, inducing dramatic shifts in the transcriptome of distinct microvascular subtypes in pathways related to proliferation, migration and antigen presentation. Two distinct waves of EC proliferation were identified, including one just prior to birth, and a second during early alveolarization, a time of exponential pulmonary angiogenesis. Chronic hyperoxia, an injury that impairs parenchymal and vascular growth, induced a common gene signature among all pulmonary EC, unique alterations to distinct microvascular EC subtypes, and disrupted EC-EC and EC-immune cell cross talk.ConclusionsTaken together, these data reveal tremendous diversity of pulmonary EC during a critical window of postnatal vascular growth, and provide a detailed molecular map that can be used to inform both normal vascular development and alterations in EC diversity upon injury. These data have important implications for lung diseases marked by dysregulated angiogenesis and pathologic pulmonary vascular remodeling.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3