Why does Δ9-Tetrahydrocannabinol act as a partial agonist of cannabinoid receptors?

Author:

Dutta Soumajit,Selvam Balaji,Das Aditi,Shukla DiwakarORCID

Abstract

AbstractCannabinoid receptor 1 (CB1) is a therapeutically relevant drug target for controlling pain, obesity, and other central nervous system disorders. However, full agonists and antagonists of CB1 have been reported to cause serious side effects in patients. Therefore, partial agonists have emerged as a viable alternative to full agonists and antagonists as they avoid overstimulation and side effects. One of the key bottlenecks in the design of partial agonists is the lack of understanding of the molecular mechanism of partial agonism. In this study, we examine two mechanistic hypotheses for the origin of partial agonism in cannabinoid receptors and explain the mechanistic basis of partial agonism exhibited by Δ9-Tetrahydrocannabinol (THC). In particular, we inspect whether partial agonism emerges from the ability of THC to bind in both agonist and antagonist binding pose or from its ability to only partially activate the receptor. Extensive molecular dynamics simulations and the Markov state model capture the THC binding in both antagonist, and agonist binding poses in CB1 receptor. Furthermore, we observe that binding of THC in the agonist binding pose leads to rotation of toggle switch residues and causes partial outward movement of intracellular transmembrane helix 6 (TM6). Our simulations also suggest that the alkyl side chain of THC plays a crucial role in determining partial agonism by stabilizing the ligand in the agonist and antagonist-like poses within the pocket. This study provides us fundamental insights into the mechanistic origin of the partial agonism of THC.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3