Loss-of-function variants in the KCNQ5 gene are associated with genetic generalized epilepsies

Author:

Krüger Johanna,Schubert Julian,Kegele Josua,Labalme Audrey,Mao Miaomiao,Heighway Jacqueline,Seebohm Guiscard,Yan Pu,Koko Mahmoud,Aslan Kezban,Caglayan Hande,Steinhoff Bernhard J.,Weber Yvonne G.,Keo-Kosal Pascale,Berkovic Samuel F.,Hildebrand Michael S.,Petrou Steven,Krause Roland,May Patrick,Lesca Gaetan,Maljevic Snezana,Lerche HolgerORCID

Abstract

ABSTRACTObjectiveDe novo missense variants in KCNQ5, encoding the voltage-gated K+ channel KV7.5, have been described as a cause of developmental and epileptic encephalopathy (DEE) or intellectual disability (ID). We set out to identify disease-related KCNQ5 variants in genetic generalized epilepsy (GGE) and their underlying mechanisms.Methods1292 families with GGE were studied by next-generation sequencing. Whole-cell patch-clamp recordings, biotinylation and phospholipid overlay assays were performed in mammalian cells combined with docking and homology modeling.ResultsWe identified three deleterious heterozygous missense variants, one truncation and one splice site alteration in five independent families with GGE with predominant absence seizures, two variants were also associated with mild to moderate ID. All three missense variants displayed a strongly decreased current density indicating a loss-of-function (LOF). When mutant channels were co-expressed with wild-type (WT) KV7.5 or KV7.5 and KV7.3 channels, three variants also revealed a significant dominant-negative effect on WT channels. Other gating parameters were unchanged. Biotinylation assays indicated a normal surface expression of the variants. The p.Arg359Cys variant altered PI(4,5)P2- interaction, presumably in the non-conducting preopen-closed state.InterpretationOur study indicates that specific deleterious KCNQ5 variants are associated with GGE, partially combined with mild to moderate ID. The disease mechanism is a LOF partially with dominant-negative effects through functional, rather than trafficking deficits. LOF of KV7.5 channels will reduce the M-current, likely resulting in increased excitability of KV7.5- expressing neurons. Further studies on a network level are necessary to understand which circuits are affected and how the variants induce generalized seizures.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3