Applications of Digital Microscopy and Densely Connected Convolutional Neural Networks for Automated Quantitation of Babesia-Infected Erythrocytes

Author:

Durant Thomas JSORCID,Dudgeon Sarah,McPadden Jacob,Simpson Anisia,Price Nathan,Schulz WadeORCID,Torres Richard,Olson Eben M

Abstract

BackgroundClinical babesiosis is diagnosed, and parasite burden is determined, by microscopic inspection of a thick or thin Giemsa-stained peripheral blood smear. However, quantitative analysis by manual microscopy is subject to observer bias, slide distribution errors, statistical sampling error, recording errors, and is inherently burdensome from time management and workflow efficiency standpoints. As such, methods for the automated measurement of percent parasitemia in digital microscopic images of peripheral blood smears could improve clinical accuracy, relative to the predicate method.MethodsIndividual erythrocyte images (shape: 70×70×3) were manually labeled as “parasite” or “normal” and were used to train a model for binary image classification. The best model was then used to calculate percent parasitemia from a clinical validation dataset, and values were compared to a clinical reference value. Lastly, model interpretability was examined using an integrated gradient to identify pixels most likely to influence classification decisions.ResultsThe precision and recall of the model during development testing were 0.92 and 1.00, respectively. In clinical validation, the model returned increasing positive signal with increasing mean reference value. However, there were two highly erroneous false positive values returned by the model. Lastly, the model incorrectly assessed three cases well above the clinical threshold of 10%. The integrated gradient suggested potential sources of false positives including rouleaux formations, cell boundaries, and precipitate as deterministic factors in negative erythrocyte images.ConclusionsWhile the model demonstrated highly accurate single cell classification and correctly assessed most slides, several false positives were highly incorrect. This project highlights the need for integrated testing of ML-based models, even when models in the development phase perform well.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3