UnMICST: Deep learning with real augmentation for robust segmentation of highly multiplexed images of human tissues

Author:

Yapp ClarenceORCID,Novikov EdwardORCID,Jang Won-DongORCID,Chen Yu-AnORCID,Cicconet MarceloORCID,Maliga ZoltanORCID,Jacobson Connor A.ORCID,Wei DonglaiORCID,Santagata SandroORCID,Pfister HanspeterORCID,Sorger Peter K.ORCID

Abstract

ABSTRACTNewly developed technologies have made it feasible to routinely collect highly multiplexed (20-60 channel) images at subcellular resolution from human tissues for research and diagnostic purposes. Extracting single cell data from such images requires efficient and accurate image segmentation. This starts with identification of nuclei, a challenging problem in tissue imaging that has recently benefited from deep learning. In this paper we demonstrate two generally applicable approaches to improving segmentation accuracy as scored using new human-labelled segmentation masks spanning multiple human tissues. The first approach involves the use of “real augmentations” during training. These comprise defocused and saturated image data and improve model accuracy when computational augmentation (Gaussian blurring) does not. The second involves collection of nuclear envelope data. The two approaches cumulatively and substantially improve segmentation with three different deep learning frameworks, yielding a set of high accuracy segmentation models. Moreover, the use of real augmentation may have applications outside of microscopy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3