Highly-potent, synthetic APOBEC3s restrict HIV-1 through deamination-independent mechanisms

Author:

McDonnell Mollie M.,Karvonen Suzanne C.ORCID,Gaba AmitORCID,Flath Ben,Chelico LindaORCID,Emerman MichaelORCID

Abstract

AbstractThe APOBEC3 (A3) genes encode cytidine deaminase proteins with potent antiviral and anti-retroelement activity. This locus is characterized by duplication, recombination, and deletion events that gave rise to the seven A3s found in primates. These include three single deaminase domain A3s (A3A, A3C, and A3H) and four double deaminase domain A3s (A3B, A3D, A3F, and A3G). The most potent of the A3 proteins against HIV-1 is A3G. However, it is not clear if double deaminase domain A3s have a generalized functional advantage to restrict HIV-1. In order to test whether superior restriction factors could be created by genetically linking single A3 domains into synthetic double domains, we combined A3C and A3H single domains in novel combinations. We found that A3C/A3H double domains acquired enhanced antiviral activity that is at least as potent, if not better than, A3G. These synthetic double domain A3s have more efficiency of packaging into budding virions than their respective single domains, but this does not fully explain their gain of antiviral potency. The antiviral activity is conferred both by cytidine-deaminase dependent and independent mechanisms, with the latter correlating to an increase in RNA binding affinity. T cell lines expressing this A3C-A3H super restriction factor are able to control replicating HIV-1ΔVif infection to similar levels as A3G. Together, these data show that novel combinations of A3 domains are capable of gaining potent antiviral activity to levels similar to the most potent genome-encoded A3s, via a primarily non-catalytic mechanism.Author SummaryAntiviral genes are encoded by all organisms to help protect them from viral infections, including proteins encoded by primates to protect them from viruses similar to HIV-1. These antiviral proteins are also called “restriction factors”. Some restriction factors are broadly acting, while others are very specific. During the course of evolution, some of these genes have expanded into multiple copies and rearranged in different versions to give them new activities. However, not all versions of these genes have been sampled in nature. In this paper, we validated the hypothesis that one particular antiviral gene family, called the APOBEC3 family, has the capability of making novel combinations of antiviral genes with as great, or greater, potency against HIV-1 as the most potent natural member of this family. By combining parts of the APOBEC3 proteins into novel combinations, we created potent antiviral versions that act through a mechanism distinct from existing APOBEC3 proteins.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3