Experiment level curation identifies high confidence transcriptional regulatory interactions in neurodevelopment

Author:

Chu Eric Ching-Pan,Morin Alexander,Chang Tak Hou Calvin,Nguyen Tue,Tsai Yi-Cheng,Sharma Aman,Liu Chao Chun,Pavlidis Paul

Abstract

AbstractTo facilitate the development of large-scale transcriptional regulatory networks (TRNs) that may enable in-silico analyses of disease mechanisms, a reliable catalogue of experimentally verified direct transcriptional regulatory interactions (DTRIs) is needed for training and validation. There has been a long history of using low-throughput experiments to validate single DTRIs. Therefore, we hypothesize that a reliable set of DTRIs could be produced by curating the published literature for such evidence. In our survey of previous curation efforts, we identified the lack of details about the quantity and the types of experimental evidence to be a major gap, despite the importance of such details for the identification of bona fide DTRIs. We developed a curation protocol to inspect the published literature for support of DTRIs at the experiment level, focusing on genes important to the development of the mammalian nervous system. We sought to record three types of low-throughput experiments: Transcription factor (TF) perturbation, TF-DNA binding, and TF-reporter assays. Using this protocol, we examined a total of 1,310 papers to assemble a collection of 1,499 unique DTRIs, involving 251 TFs and 825 target genes, many of which were not reported in any other DTRI resource. The majority of DTRIs (965, 64%) were supported by two or more types of experimental evidence and 27% were supported by all three. Of the DTRIs with all three types of evidence, 170 had been tested using primary tissues or cells and 44 had been tested directly in the central nervous system. We used our resource to document research biases among reports towards a small number of well-studied TFs. To demonstrate a use case for this resource, we compared our curation to a previously published high-throughput perturbation screen and found significant enrichment of the curated targets among genes differentially expressed in the developing brain in response to Pax6 deletion. This study demonstrates a proof-of-concept for the assembly of a high confidence DTRI resource in order to support the development of large-scale TRNs.Author SummaryThe capacity to computationally reconstruct gene regulatory networks using large-scale biological data is currently limited by the absence of a high confidence set of one-to-one regulatory interactions. Given the lengthy history of using small scale experimental assays to investigate individual interactions, we hypothesize that a reliable collection of gene regulatory interactions could be compiled by systematically inspecting the published literature. To this end, we developed a curation protocol to examine and record evidence of regulatory interactions at the individual experiment level. Focusing on the area of brain development, we applied our pipeline to 1,310 publications. We identified 3,601 individual experiments, providing detailed information about 1,499 regulatory interactions. Many of these interactions have verified activity specifically in the embryonic brain. By capturing reports of regulatory interactions at this level of granularity, we present a resource that is more interpretable than other similar resources.

Publisher

Cold Spring Harbor Laboratory

Reference52 articles.

1. Genome-Scale Transcriptional Regulatory Network Models of Psychiatric and Neurodegenerative Disorders;Cell Syst,2019

2. Leveraging chromatin accessibility for transcriptional regulatory network inference in T Helper 17 Cells

3. Transcriptional regulatory networks underlying gene expression changes in Huntington's disease

4. Understanding Tissue-Specific Gene Regulation

5. Satterstrom FK , Kosmicki JA , Wang J , Breen MS , Rubeis SD , An J-Y , et al. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell [Internet]. 2020 Jan 23 [cited 2020 Jan 23];0(0). Available from: https://www.cell.com/cell/abstract/S0092-8674(19)31398-4

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3