Dynamics of neurotransmitter and extracellular vesicle-derived microRNA landscapes during heroin and methamphetamine withdrawal

Author:

Yu JuehuaORCID,Chen Fengrong,Xu Yu,Shi Kai,Zhang Zunyue,Peng Qingyan,Xie Zhenrong,Lu Jing,Wu Hongjin,Ma Yuru,Zou Lei,Zhou Yong,Chen Cheng,Yang Jiqing,Kuang Yiqun,Wang Yuan,Tan Tao,Zhu Mei,Robbins Trevor W.,Wang Kunhua

Abstract

AbstractCirculating miRNAs in small vesicles known as exosomes within blood have been emerging as a new research hotspot in the field of psychiatric disorders. The aim of this work was to characterize the changes in exosomal microRNA profiles, both short-term and long-term, during substance withdrawal using a cross-sectional study design. Using weighted gene co-expression network analysis, a series of known, conserved, and novel exosomal microRNAs were identified as being associated with withdrawal stage and key neurotransmitters GABA, choline, and serotonin. Bioinformatics analyses established that the differences in the miRNA profile target signaling pathways are associated with developmental and intellectual abnormalities. Notably, a set of dysregulated microRNA signatures including hsa-mia-451a and hsa-mir-21a resulted in an AUC of 0.966 and 0.861, respectively, for predicting patients with substance use disorders. Furthermore, hsa-miR-744a-5p was positively correlated with serotonin, and its important role in maintaining neuronal development and function was revealed using an in vitro human induced pluripotent stem cells derived neuronal model. Taken together, these data suggest that the microRNA content of circulating exosomes represent a biomolecular “fingerprint” of the progression of substance withdrawal and may uncover the putative mechanism of how these exosomal microRNAs contribute to central nervous system development and function.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3