Phenotypic heterogeneity is adaptive for microbial populations under starvation

Author:

Opalek Monika,Smug Bogna,Doebeli Michael,Wloch-Salamon DominikaORCID

Abstract

AbstractTo persist in variable environments populations of microorganisms have to survive periods of starvation and be able to restart cell division in nutrient-rich conditions. Typically, starvation signals initiate a transition to a quiescent state in a fraction of individual cells, while the rest of the cells remain non-quiescent. It is widely believed that, while quiescent cells (Q) help the population to survive long starvation, the non-quiescent cells (NQ) are a side effect of imperfect transition. We analysed regrowth of starved monocultures of Q and NQ cells compared to mixed, heterogeneous cultures in simple and complex starvation environments. Our experiments, as well as mathematical modelling, demonstrate that Q monocultures benefit from better survival during long starvation, and from a shorter lag phase after resupply of rich medium. However, when the starvation period is very short, the NQ monocultures outperform Q and mixed cultures, due to their short lag phase. In addition, only NQ monocultures benefit from complex starvation environments, where nutrient recycling is possible. Our study suggests that phenotypic heterogeneity in starved populations could be a form of bet hedging, which is adaptive when environmental determinants, such as the length of the starvation period, the length of the regrowth phase, and the complexity of the starvation environment vary over time.ImportanceNon-genetic cell heterogeneity is present in glucose starved yeast populations in the form of quiescent (Q) and nonquiescent (NQ) phenotypes. There is evidence that Q cells help the population to survive long starvation. However, the role of the NQ cell type is not known, and it has been speculated that the NQ phenotype is just a side effect of imperfect transition to the Q phenotype. Here we show that, in contrast, there are ecological scenarios in which NQ cells perform better than monocultures of Q cells or naturally occuring mixed populations containing both Q and NQ. NQ cells benefit when the starvation period is very short and environmental conditions allow nutrient recycling during starvation. Our experimental and mathematical modeling results suggest a novel hypothesis: the presence of both Q and NQ phenotypes within starved yeast populations may reflect a form of bet hedging, where different phenotypes provide fitness advantages depending on environmental conditions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3