CD95 expression in triple negative breast cancer blocks induction of an inflammatory state through differential regulation of NF-κB Signaling

Author:

Guégan Jean-Philippe,Pollet Justine,Ginestier Christophe,Charafe-Jauffret Emmanuelle,Peter Marcus E.,Legembre Patrick

Abstract

AbstractCD95L is expressed by tumor-infiltrating lymphocytes to eliminate CD95-expressing tumor cells and thereby CD95 loss by tumor cells is often considered as a consequence of an immunoediting process. Nonetheless CD95 expression is maintained in most triple negative breast cancers (TNBCs), and we recently reported that CD95 loss in TNBC cells triggers the induction of a pro-inflammatory program promoting the recruitment of cytotoxic NK and CD8+ T-cells and impairing tumor growth. Using a comprehensive proteomic approach, we have identified two yet unknown CD95 interaction partners, Kip1 ubiquitination-promoting complex protein 2 (KPC2) and p65. KPC2 contributes to the partial degradation of p105 (NFκB1) and the subsequent generation of p50 homodimers, which transcriptionally represses pro-inflammatory NF-κB-driven gene expression. Mechanistically, KPC2 directly interacts with the C-terminal region of CD95 and links the receptor to RelA (p65) and KPC1, the catalytic subunit of the KPC complex that acts as E3 ubiquitin-protein ligase promoting the partial degradation of p105 into p50. Loss of CD95 in TNBC cells releases KPC2, limiting the formation of the NF-κB inhibitory homodimer complex (p50/p50), promoting NF-κB activation and the production of pro-inflammatory cytokines including CSF1, CSF2, CXCL1 and IL1 members, known to promote recruitment and differentiation of certain adaptive and innate immune effector cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3