Viral neuroinvasion and neurotropism without neuronal damage in the hACE2 mouse model of COVID-19

Author:

Seehusen FraukeORCID,Clark Jordan J.,Sharma Parul,Subramaniam KrishanthiORCID,Giuliani Sabina Wunderlin,Hughes Grant L.ORCID,Patterson Edward I.,Michael Benedict D.ORCID,Owen Andrew,Hiscox Julian A.,Stewart James P.ORCID,Kipar AnjaORCID

Abstract

AbstractCoronavirus disease 2019 (COVID-19) is a primarily respiratory disease with variable clinical courses for which animal models are needed to gather insights into the pathogenesis of its causative virus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), in human patients. SARS-CoV-2 not only affects the respiratory tract but also the central nervous system (CNS), leading to neurological symptoms such as loss of smell and taste, headache, fatigue or severe complications like cerebrovascular diseases. Transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) under the cytokeratin 18 promoter (K18-hACE2) represent a well-known model of SARS-CoV-2 infection. In the present study, it served to investigate the spatiotemporal distribution and pathomorphological features in the CNS following intranasal infection with relatively low SARS-CoV-2 doses and after prior influenza A virus infection.In K18-hACE2 mice, SARS-CoV-2 was found to frequently spread to and within the CNS during the later phase (day 7) of infection. Infection was restricted to neurons and appeared to first affect the olfactory bulb and spread from there mainly in basally orientated regions in the brain and into the spinal cord, in a dose dependent manner and independent of ACE2 expression. Neuronal infection was not associated with cell death, axonal damage or demyelination. However, microglial activation, microgliosis and a mild macrophage and T cell dominated inflammatory response was consistently observed. This was accompanied by apoptotic death of endothelial, microglial and immune cells, without evidence of viral infection of glial cells, endothelial cells and leukocytes.Taken together, microgliosis and immune cell apoptosis indicate a potential important role of microglial cells for the pathogenesis and viral effect in COVID-19 and possible impairment of neurological functions, especially in long COVID. These data may also be informative for the selection of therapeutic candidates, and broadly support investigation of agents with adequate penetration into relevant regions of the CNS.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3