Updates to data versions and analytic methods influence the reproducibility of results from epigenome-wide association studies

Author:

Lussier Alexandre A.,Zhu Yiwen,Smith Brooke J.,Simpkin Andrew J.,Smith Andrew D.A.C.,Suderman Matthew J.,Walton Esther,Ressler Kerry J.,Dunn Erin C.

Abstract

ABSTRACTIntroductionBiomedical research has grown increasingly cooperative, with several large consortia compiling and sharing epigenomic data. Since data are typically preprocessed by consortia prior to distribution, the implementation of new pipelines can lead to different versions of the same dataset. Analytic frameworks also constantly evolve to incorporate cutting-edge methods and shifting best practices. However, it remains unknown how differences in data and analytic versions alter the results of epigenome-wide analyses, which has broad implications for the replicability of epigenetic associations. Thus, we assessed the impact of these changes using a subsample of the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort.MethodsWe analyzed two versions of DNA methylation data, processed using separate preprocessing and analytic pipelines, to examine associations between childhood adversity and prenatal smoking exposure on DNA methylation at age 7. We performed two sets of analyses: (1) epigenome-wide association studies (EWAS); (2) Structured Life Course Modeling Approach (SLCMA), a two-stage method that models time-dependent effects. We also compared results from the SLCMA using more recent methodological recommendations.ResultsDifferences between ALSPAC data versions impacted both EWAS and SLCMA analyses, yielding different sets of associations at conventional p-value thresholds. However, the magnitude and direction of associations was generally consistent between data versions, regardless of significance thresholds. Updating the SLCMA analytic version similarly altered top associations, but time-dependent effects remained concordant.ConclusionsChanges to data and analytic versions influenced the results of epigenome-wide studies, particularly when using p-value thresholds as reference points for successful replication and stability.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3