Causally informed activity flow models provide mechanistic insight into the emergence of cognitive processes from brain network interactions

Author:

Sanchez-Romero RubenORCID,Ito TakuyaORCID,Mill Ravi D.ORCID,José Hanson StephenORCID,Cole Michael W.ORCID

Abstract

AbstractBrain activity flow models estimate the movement of task-evoked activity over brain connections to help explain the emergence of task-related functionality. Activity flow estimates have been shown to accurately predict task-evoked brain activations across a wide variety of brain regions and task conditions. However, these predictions have had limited explanatory power, given known issues with causal interpretations of the standard functional connectivity measures used to parameterize activity flow models. We show here that functional/effective connectivity (FC) measures grounded in causal principles facilitate mechanistic interpretation of activity flow models. Starting from Pearson correlation (the current field standard), we progress from FC measures with poor to excellent causal grounding, demonstrating a continuum of causal validity using simulations and empirical fMRI data. Finally, we apply a causal FC method to a dorsolateral prefrontal cortex region, demonstrating causal network mechanisms contributing to its strong activation during a 2-back (relative to a 0-back) working memory task. Together, these results reveal the promise of parameterizing activity flow models using causal FC methods to identify network mechanisms underlying cognitive computations in the human brain.Highlights-Activity flow models provide insight into how cognitive neural effects emerge from brain network interactions.-Functional connectivity methods grounded in causal principles facilitate mechanistic interpretations of task activity flow models.-Mechanistic activity flow models accurately predict task-evoked neural effects across a wide variety of brain regions and cognitive tasks.

Publisher

Cold Spring Harbor Laboratory

Reference102 articles.

1. Aliferis, C. F. , Statnikov, A. , Tsamardinos, I. , Mani, S. , & Koutsoukos, X. D. (2010). Local causal and markov blanket induction for causal discovery and feature selection for classification part i: Algorithms and empirical evaluation. Journal of Machine Learning Research, 11(1).

2. The relation between Granger causality and directed information theory: A review;Entropy,2013

3. Identifying and removing widespread signal deflections from fMRI data: Rethinking the global signal regression problem

4. Function in the human connectome: Task-fMRI and individual differences in behavior

5. Limitations of the Application of Fourfold Table Analysis to Hospital Data

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3