Prime hAd5 Spike + Nucleocapsid Vaccination Induces Ten-Fold Increases in Mean T-Cell Responses in Phase 1 Subjects that are Sustained Against Spike Variants

Author:

Sieling Peter,King Thomas,Wong Raymond,Nguyen Andy,Wnuk Kamil,Gabitzsch Elizabeth,Rice Adrian,Adisetiyo Helty,Hermreck Melanie,Verma Mohit,Zakin Lise,Shin Annie,Morimoto Brett,Higashide Wendy,Dinkins Kyle,Balint Joseph,Peykov Victor,Taft Justin,Patel RoosheelORCID,Buta Sofija,Martin-Fernandez Marta,Bogunovic Dusan,Spilman Patricia,Sender Lennie,Reddy Sandeep,Robinson Philip,Rabizadeh Shahrooz,Niazi Kayvan,Soon-Shiong PatrickORCID

Abstract

ABSTRACTIn response to the need for a safe, efficacious vaccine that elicits vigorous T cell as well as humoral protection against SARS-CoV-2 infection, we have developed a dual-antigen COVID-19 vaccine comprising both the viral spike (S) protein modified to increase cell-surface expression (S-Fusion) and nucleocapsid (N) protein with an Enhanced T-cell Stimulation Domain (N-ETSD) to enhance MHC class I and II presentation and T-cell responses. The antigens are delivered using a human adenovirus serotype 5 (hAd5) platform with E1, E2b, and E3 regions deleted that has been shown previously in cancer vaccine studies to be safe and effective in the presence of pre-existing hAd5 immunity. The findings reported here are focused on human T-cell responses due to the likelihood that such responses will sustain efficacy against emerging variants, a hypothesis supported by our in silico prediction of T-cell epitope HLA binding for both the first-wave SARS-CoV-2 ‘A’ strain and the B.1.351 strain K417N, E484K, and N501Y spike and T201I N variants. We demonstrate the hAd5 S-Fusion + N-ETSD vaccine antigens expressed by previously SARS-CoV-2-infected patient dendritic cells elicit Th1 dominant activation of autologous patient T cells, indicating the vaccine antigens have the potential to elicit immune responses in previously infected patients. For participants in our open-label Phase 1b study of the vaccine (NCT04591717; https://clinicaltrials.gov/ct2/show/NCT04591717), the magnitude of Th-1 dominant S- and N-specific T-cell responses after a single prime subcutaneous injection were comparable to T-cell responses from previously infected patients. Furthermore, vaccinated participant T-cell responses to S were similar for A strain S and a series of spike variant peptides, including S variants in the B.1.1.7 and B.1.351 strains. The findings that this dual-antigen vaccine elicits SARS-CoV-2-relevant T-cell responses and that such cell-mediated protection is likely to be sustained against emerging variants supports the testing of this vaccine as a universal booster that would enhance and broaden existing immune protection conferred by currently approved S-based vaccines.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3