Radio-pathomic maps of cell density identify glioma invasion beyond traditional MR imaging defined margins

Author:

Bobholz Samuel A.,Lowman Allison K.,Brehler Michael,Kyereme Fitzgerald,Duenweg Savannah R.,Sherman John,McGarry Sean,Cochran Elizabeth J.,Connelly Jennifer,Mueller Wade M.,Agarwal Mohit,Banerjee Anjishnu,LaViolette Peter S.

Abstract

AbstractCurrent MRI signatures of brain cancer often fail to identify regions of hypercellularity beyond the contrast enhancing region. Therefore, this study used autopsy tissue samples aligned to clinical MRIs in order to quantify the relationship between intensity values and cellularity, as well as to develop a radio-pathomic model to predict cellularity using MRI data. This study used 93 samples collected at autopsy from 44 brain cancer patients. Tissue samples were processed, stained for hematoxylin and eosin (HE) and digitized for nuclei segmentation and cell density calculation. Pre- and post-gadolinium contrast T1-weighted images (T1, T1C), T2 fluid-attenuated inversion recovery (FLAIR) images, and apparent diffusion coefficient (ADC) images calculated from diffusion imaging were collected from each patients’ final acquisition prior to death. In-house software was used to align tissue samples to the FLAIR image via manually defined control points. Mixed effect models were used to assess the relationship between single image intensity and cellularity for each image. An ensemble learner was trained to predict cellularity using 5 by 5 voxel tiles from each image, employing a 2/3-1/3 train-test split for validation. Single image analyses found subtle associations between image intensity and cellularity, with a less pronounced relationship within GBM patients. The radio-pathomic model was able to accurately predict cellularity in the test set (RMSE = 1015 cells/mm2) and identified regions of hypercellularity beyond the contrast enhancing region. We concluded that a radio-pathomic model for cellularity is able to identify regions of hypercellular tumor beyond traditional imaging signatures.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3