Engineering T cell resistance to HIV-1 infection via knock-in of peptides from the heptad repeat 2 domain of gp41

Author:

Maslennikova AlexandraORCID,Kruglova Natalia,Kalinichenko Svetlana,Komkov DmitriyORCID,Shepelev Mikhail,Golubev Dmitriy,Siniavin Andrei,Vzorov Andrei,Filatov Alexander,Mazurov Dmitriy

Abstract

ABSTRACTPrevious studies suggest that short peptides from the heptad repeat 2 (HR2) domain of gp41 expressed on the cell surface are more potent inhibitors of HIV-1 entry than soluble analogs. However, their therapeutic potential has only been examined using lentiviral vectors. Here, we aimed to develop CRISPR/Cas9-based fusion inhibitory peptide knock-in (KI) technology for the generation and selection of HIV-1-resistant T cells. First, we cloned a series of HIV-1 fusion inhibitory peptides and embedded them in CD52, the shortest GPI-anchored protein, which efficiently delivers epitope tags to the cell surface and maintains a sufficient level of KI. Among the seven peptides tested, MT-C34, HP-23L, and 2P23 exhibited significant activity against both cell-free and cell-to-cell HIV-1 infection. Unlike membrane-bound peptides, the shed variant of MT-C34 provided insufficient protection against HIV-1 due to its low concentrations in the culture medium. Using Cas9 plasmids or ribonucleoprotein electroporation and cell sorting with antibodies raised against gp41 peptides, we generated CEM/R5 cells with biallelic KI of MT-C34 (embedded in CD52 for expression in lipid rafts) and 2P23 (N-terminally fused to CXCR4). In combination, these peptides provided a higher level of protection than individual KI. By extending homology arms and substituting PCR donor DNA with a plasmid containing signals for nuclear localization, we achieved KI of MT-C34 into CXCR4 loci and HIV-1 proviral DNA at levels of up to 35% in CEM/R5 cells and increased KI occurrence from undetectable to 4-5% in CD4 lymphocytes. Comparative analysis of lentiviral and HDR-based delivery strategies showed that KI led to the higher MT-C34 expression and stronger protection of primary CD4 lymphocytes from HIV-1 than lentiviral transduction, albeit the efficiency of KI needs further improvements in order to meet clinical requirements. Thus, the developed CRISPR/Cas9 platform offers a new opportunity for antiviral peptide delivery with a concomitant precise genetic modification of targeted locus that can be employed to strengthen cell protection against HIV.AUTHOR SUMMARYHIV is a human lentivirus that infects CD4-positive immune cells and, when left untreated, manifests in the fatal disease known as acquired immunodeficiency syndrome. Antiretroviral therapy (ART) is not leading to viral clearance, and HIV persists in the organism as a latent provirus. One way to control infection is to increase the population of HIV-resistant CD4 lymphocytes via entry molecule knockout or expression of different antiviral genes. Peptides from the heptad repeat (HR) domain of gp41 are potent inhibitors of HIV-1 fusion, especially when designed to express on the cell surface. Individual gp41 peptides encoded by therapeutic lentiviral vectors have been evaluated and some have entered clinical trials. However, a CRISPR/Cas9-based gp41 peptide delivery platform that operates through concomitant target gene modification has not yet been developed due to low knock-in (KI) rates in primary cells. Here, we systematically evaluated the antiviral activity of different HR2-peptides cloned into the shortest carrier molecule, CD52. The resulting small-size transgene constructs encoding selected peptides, in combination with improvements to enhance donor vector nuclear import, helped to overcome precise editing restrictions in CD4 lymphocytes. Using KI into CXCR4, we demonstrated different options for target gene modification, effectively protecting edited cells against HIV-1.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3