An infectious Rous Sarcoma Virus Gag mutant that is defective in nuclear cycling

Author:

Ricaña Clifton LORCID,Johnson Marc CORCID

Abstract

AbstractDuring retroviral replication, unspliced viral genomic RNA (gRNA) must escape the nucleus for translation into viral proteins and packaging into virions. “Complex” retroviruses such as Human Immunodeficiency Virus (HIV) use cis-acting elements on the unspliced gRNA in conjunction with trans-acting viral proteins to facilitate this escape. “Simple” retroviruses such as Mason-Pfizer Monkey Virus (MPMV) and Murine Leukemia Virus (MLV) exclusively use cis-acting elements on the gRNA in conjunction with host nuclear export proteins for nuclear escape. Uniquely, the simple retrovirus Rous Sarcoma Virus (RSV) has a Gag structural protein that cycles through the nucleus prior to plasma membrane binding. This trafficking has been implicated in facilitating gRNA nuclear export and is thought to be a required mechanism. Previously described mutants that abolish nuclear cycling displayed enhanced plasma membrane binding, enhanced virion release, and a significant loss in genome incorporation resulting in loss of infectivity. Here, we describe a nuclear cycling deficient RSV Gag mutant that has similar plasma membrane binding and genome incorporation to WT virus and surprisingly, is replication competent albeit with a slower rate of spread compared to WT. This mutant suggests that RSV Gag nuclear cycling is not strictly required for RSV replication.ImportanceWhile mechanisms for retroviral Gag assembly at the plasma membrane are beginning to be characterized, characterization of intermediate trafficking locales remain elusive. This is in part due to the difficulty of tracking individual proteins from translation to plasma membrane binding. RSV Gag nuclear cycling is a unique phenotype that may provide comparative insight to viral trafficking evolution and may present a model intermediate to cis- and trans-acting mechanisms for gRNA export.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3