RNA-seq of the medusavirus suggests remodeling of the host nuclear environment at an early infection stage

Author:

Zhang Ruixuan,Endo Hisashi,Takemura Masaharu,Ogata Hiroyuki

Abstract

AbstractNucleo–cytoplasmic large DNA viruses (NCLDVs) undergo a cytoplasmic or nucleo–cytoplasmic cycle, and the latter involves both nuclear and cytoplasmic compartments to proceed viral replication. Medusavirus, a recently isolated NCLDV, has a nucleo–cytoplasmic replication cycle in amoebas during which the host nuclear membrane apparently remains intact, a unique feature among amoeba–infecting giant viruses. The medusavirus genome lacks most transcription genes but encodes a full set of histone genes. To investigate the infection strategy, we performed a time–course RNA–seq experiment. All the viral genes were transcribed and classified into five temporal expression clusters. The immediate early genes (cluster 1, 42 genes) were mostly (83%) of unknown functions, frequently (95%) associated with a palindromic promoter–like motif, and enriched (45%) in putative nuclear–targeting genes. The later genes (clusters 2–5) were assigned to various functional categories. The viral linker histone H1 gene was in cluster 1, whereas the four core histone genes were in cluster 3, suggesting they had distinct roles during the course of the virus infection. The transcriptional profile of the host amoeba, Acanthamoeba castellanii, genes was greatly altered post–infection. Several encystment–related host genes showed increased representation levels at 48 hours post–infection, which is consistent with the previously reported amoeba encystment upon medusavirus infection. Overall, the transcriptional landscape during the course of medusavirus infection suggests that the virus modifies the host nuclear environment immediately after the initiation of infection. –ImportanceMedusavirus is an amoeba-infecting giant virus that was isolated from a hot spring in Japan. It belongs to the proposed family “Medusaviridae” in the phylum Nucleocytoviricota. Unlike other amoeba-infecting giant viruses, medusavirus initiates its DNA replication in the host nucleus without disrupting the nuclear membrane. Our RNA-seq analysis of its infection course uncovered ordered viral gene expression profiles. We identified temporal expression clusters of viral genes and associated putative promoter motifs. The subcellular localization prediction showed a clear spatiotemporal correlation between gene expression timing and localization of the encoded proteins. Notably, the immediate early expression cluster was enriched in genes targeting the nucleus, suggesting the priority of remodeling the host intra-nuclear environment during infection. The transcriptional profile of the amoeba genes was greatly altered post-infection. Notably, the expression of encystment-related genes increased 48 hours post-infection, suggesting that encystment may be an antiviral strategy of amoeba.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3