Author:
Heit Sabine,Geurts Maxwell M.G.,Murphy Bonnie J.,Corey Robin A.,Mills Deryck J.,Kühlbrandt Werner,Bublitz Maike
Abstract
AbstractThe fungal plasma membrane H+-ATPase Pma1 is a vital enzyme, generating a proton-motive force that drives the import of essential nutrients. Auto-inhibited Pma1 hexamers in starving fungi are activated by glucose signalling resulting in phosphorylation of the auto-inhibitory domain. As related P-type ATPases are not known to oligomerise, the physiological relevance of Pma1 hexamers remains unknown. We have determined the structure of hexameric Pma1 from Neurospora crassa by cryo-EM at 3.3 Å resolution, elucidating the molecular basis for hexamer formation and auto-inhibition, and providing a basis for structure-based drug development. Coarse-grained molecular dynamics simulations in a lipid bilayer suggest lipid-mediated contacts between monomers and a substantial protein-induced membrane deformation that could act as a proton-attracting funnel.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献