Cerebellar neuronal dysfunction accompanies early motor symptoms in Spinocerebellar Ataxia Type 3 and is partially alleviated upon chronic citalopram treatment

Author:

Palarz KJORCID,Neves-Carvalho AORCID,Duarte-Silva SORCID,Maciel PORCID,Khodakhah KORCID

Abstract

ABSTRACTSpinocerebellar ataxia type 3 (SCA3) is an adult-onset, progressive ataxia with no current disease modifying treatments. SCA3 patients have mild degeneration of the cerebellum, a brain area involved in motor coordination and maintenance of balance, as well as of the brainstem, of the spinal cord and of other movement-related subcortical areas. However, both SCA3 patients and SCA3 mouse models present clinical symptoms before any gross pathology is detectable, which suggests neuronal dysfunction precedes neurodegeneration, and opens an opportunity for therapeutic intervention. Such observations also raise the question of what triggers these abnormal motor phenotypes. Purkinje cells are the major computational unit within the cerebellum and are responsible for facilitating coordinated movements. Abnormal Purkinje cell activity is sufficient to cause ataxia. In this study, we show that the CMVMJD135 mouse model of SCA3 has dysfunctional deep cerebellar nuclei and Purkinje cells. Both cell types have increased irregularity as measured by inter-spike interval coefficient of variation. Purkinje cell dysfunction is likely a combination of intrinsic and extrinsic (synaptic) dysfunction. Interestingly, Citalopram, a selective serotonin reuptake inhibitor previously shown to alleviate disease in CMVMJD135 mice, also improved cerebellar neuron function in the CMVMJD135 mouse model. Specifically, we found that Purkinje cell dysfunction when synaptic transmission is intact was alleviated with citalopram treatment, however, intrinsic Purkinje cell dysfunction was not alleviated. Altogether, our findings suggest that cerebellar neuronal dysfunction contributes to the onset of SCA3 motor dysfunction and that citalopram, while effective at alleviating the motor phenotype, does not restore Purkinje cell intrinsic activity in SCA3. A novel therapeutic approach that combines citalopram with another therapeutic that targets this intrinsic dysfunction in a complementary manner might further reduce disease burden in SCA3.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3