Multiparametric Platform for Profiling Lipid Trafficking in Human Leukocytes: Application for Hypercholesterolemia

Author:

Pfisterer Simon G.ORCID,Brock Ivonne,Kanerva KristiinaORCID,Hlushchenko IrynaORCID,Paavolainen LassiORCID,Ripatti PietariORCID,Islam Mohammad M.,Kyttälä Aija,Di Taranto Maria D.ORCID,di Frega Annalisa Scotto,Fortunato GiulianaORCID,Kuusisto JohannaORCID,Horvath Peter,Ripatti SamuliORCID,Laakso Markku,Ikonen ElinaORCID

Abstract

SummarySystematic insight into cellular dysfunctions can improve understanding of disease etiology, risk assessment and patient stratification. We present a multiparametric high-content imaging platform enabling quantification of low-density lipoprotein (LDL) uptake and lipid storage in cytoplasmic droplets of primary leukocyte subpopulations. We validated this platform with samples from 65 individuals with variable blood LDL-cholesterol (LDL-c) levels, including familial hypercholesterolemia (FH) and non-FH subjects. We integrated lipid storage data into a novel readout, lipid mobilization, measuring the efficiency with which cells deplete lipid reservoirs. Lipid mobilization correlated positively with LDL uptake and negatively with hypercholesterolemia and age, improving differentiation of individuals with normal and elevated LDL-c. Moreover, combination of cell-based readouts with a polygenic risk score for LDL-c explained hypercholesterolemia better than the genetic risk score alone. This platform provides functional insights into cellular lipid trafficking from a few ml’s of blood and is applicable to dissect metabolic disorders, such as hypercholesterolemia.MotivationWe have limited information on how cellular lipid uptake and processing differ between individuals and influence the development of metabolic diseases, such as hypercholesterolemia. Available assays are labor intensive, require skilled personnel and are difficult to scale to higher throughput, making it challenging to obtain systematic functional cell-based data from individuals. To overcome this problem, we established a scalable automated analysis pipeline enabling reliable quantification of multiple cellular readouts, including lipid uptake, storage and mobilization, from different white blood cell populations. This approach provides new personalized insights into the cellular basis of hypercholesterolemia and obesity.Graphical Abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3