Integrative multi-omics analysis reveals conserved hierarchical mechanisms of FOXO3 pioneer-factor activity

Author:

Brown Abigail K.ORCID,Maybury-Lewis Sun Y.ORCID,Webb Ashley E.ORCID

Abstract

AbstractFOXO transcription factors are critical for cellular homeostasis and have been implicated in longevity in several species. Yet how these factors directly affect aging, particularly in humans, is not well understood. Here, we take an integrated multi-omics approach to identify the chromatin-level mechanisms by which FOXO3 coordinates transcriptional programs. We find that FOXO3 functions as a pioneer factor in human cells, directly altering chromatin accessibility to regulate gene expression. Unexpectedly, FOXO3’s pioneer activity at many sites is achieved through a two-step process, in which chromatin accessibility is initially reduced, then transitions to an open conformation. The direct FOXO3 network comprises chromatin remodelers, including the SWI/SNF remodeling complex, which we find is functionally required for FOXO3 activity. We also identify a novel secondary network of activator protein-1 (AP-1) transcription factors deployed by FOXO3, which orchestrate a neuronal-specific subnetwork. Together, this hierarchical FOXO3 pioneer network regulates key cellular processes including metabolism, proteostasis, epigenetics and proliferation, which must be tightly controlled under changing conditions that accompany aging.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3