Abstract
ABSTRACTQuorum sensing is a chemical communication process that bacteria use to coordinate group behaviors. In the global pathogen Vibrio cholerae, one quorum-sensing receptor and transcription factor, called VqmA (VqmAVc), activates expression of the vqmR gene encoding the small regulatory RNA VqmR, which represses genes involved in virulence and biofilm formation. Vibriophage VP882 encodes a VqmA homolog called VqmAPhage that activates transcription of the phage gene qtip, and Qtip launches the phage lytic program. Curiously, VqmAPhage can activate vqmR expression but VqmAVc cannot activate expression of qtip. Here, we investigate the mechanism underlying this asymmetry. We find that promoter selectivity is driven exclusively by each VqmA DNA-binding domain and key DNA sequences in the vqmR and qtip promoters are required to maintain specificity. A protein sequence-guided mutagenesis approach revealed that the residue E194 of VqmAPhage and A192, the equivalent residue in VqmAVc, in the helix-turn-helix motifs contribute to promoter-binding specificity. A genetic screen to identify VqmAPhage mutants that are incapable of binding the qtip promoter but maintain binding to the vqmR promoter delivered additional VqmAPhage residues located immediately C-terminal to the helix-turn-helix motif as required for binding the qtip promoter. Surprisingly, these residues are conserved between VqmAPhage and VqmAVc. A second, targeted genetic screen revealed a region located in the VqmAVc DNA-binding domain as necessary to prevent VqmAVc from binding the qtip promoter, thus restricting DNA-binding to the vqmR promoter. We propose that the VqmAVc helix-turn-helix motif and the C-terminal flanking residues function together to prohibit VqmAVc from binding the qtip promoter.AUTHOR SUMMARYBacteria use a chemical communication process called quorum sensing (QS) to orchestrate collective behaviors. Recent studies demonstrate that bacteria-infecting viruses, called phages, also employ chemical communication to regulate collective activities. Phages can encode virus-specific QS-like systems, or they can harbor genes encoding QS components resembling those of bacteria. The latter arrangement suggests the potential for chemical communication across domains, i.e., between bacteria and phages. Ramifications stemming from such cross-domain communication are not understood. Phage VP882 infects the global pathogen Vibrio cholerae, and “eavesdrops” on V. cholerae QS to optimize the timing of its transition from living as a parasite to killing the host, and moreover, to manipulate V. cholerae biology. To accomplish these feats, phage VP882 relies on VqmAPhage, the phage-encoded homolog of the V. cholerae VqmAVc QS receptor and transcription factor. VqmAVc, by contrast, is constrained to the control of only V. cholerae genes and is incapable of regulating phage biology. Here, we discover the molecular mechanism underpinning the asymmetric transcriptional preferences of the phage-encoded and bacteria-encoded VqmA proteins. We demonstrate how VqmA transcriptional regulation is crucial to the survival and persistence of both the pathogen V. cholerae, and the phage that preys on it.
Publisher
Cold Spring Harbor Laboratory