Chemotherapy-induced collagen IV drives cancer cell invasion through activation of Src/FAK signaling

Author:

Fatherree Jackson P.ORCID,Guarin Justinne R.ORCID,McGinn Rachel A.ORCID,Naber Stephen P.ORCID,Oudin Madeleine J.ORCID

Abstract

AbstractTriple-negative breast cancer (TNBC) is the most aggressive and deadly subtype of breast cancer, accounting for 30,000 cases annually in the US. While there are several clinical trials ongoing to identify new agents to treat TNBC, the majority of TNBC patients are treated with anthracycline- or taxane-based chemotherapies in the neoadjuvant setting, followed by surgical resection and adjuvant chemotherapy. While many patients respond well to this approach, as many as 25% will suffer local or metastatic recurrence within five years. Understanding the mechanisms that drive recurrence after chemotherapy treatment is critical to improving survival for patients with TNBC. It is well-established that the extracellular matrix, which provides structure and support to tissues, is a major driver of tumor growth, local invasion and dissemination of cancer cells to distant metastatic sites. In the present study, we show that decellularized extracellular matrix (dECM) obtained from chemotherapy-treated mice increases invasion of treatment-naïve breast cancer cells compared to vehicle-treated dECM. Using tandem-mass-tag proteomics, we further demonstrate that anthracycline- and taxane-based chemotherapies induce drug-specific changes in tumor ECM composition. We identify the basement membrane protein collagen IV as significantly upregulated in the ECM of chemotherapy-treated mice and patients treated with neoadjuvant chemotherapy. We show that collagen IV drives invasion via Src/FAK signaling and that inhibiting collagen IV-driven signaling decreases invasion in chemotherapy-treated dECM. These studies provide a novel mechanism by which chemotherapy may induce metastasis via effects on ECM composition.One Sentence SummaryChemotherapy alters the extracellular matrix of breast tumors leading to increased invasion of residual cancer cells.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3