Abstract
AbstractTriple-negative breast cancer (TNBC) is the most aggressive and deadly subtype of breast cancer, accounting for 30,000 cases annually in the US. While there are several clinical trials ongoing to identify new agents to treat TNBC, the majority of TNBC patients are treated with anthracycline- or taxane-based chemotherapies in the neoadjuvant setting, followed by surgical resection and adjuvant chemotherapy. While many patients respond well to this approach, as many as 25% will suffer local or metastatic recurrence within five years. Understanding the mechanisms that drive recurrence after chemotherapy treatment is critical to improving survival for patients with TNBC. It is well-established that the extracellular matrix, which provides structure and support to tissues, is a major driver of tumor growth, local invasion and dissemination of cancer cells to distant metastatic sites. In the present study, we show that decellularized extracellular matrix (dECM) obtained from chemotherapy-treated mice increases invasion of treatment-naïve breast cancer cells compared to vehicle-treated dECM. Using tandem-mass-tag proteomics, we further demonstrate that anthracycline- and taxane-based chemotherapies induce drug-specific changes in tumor ECM composition. We identify the basement membrane protein collagen IV as significantly upregulated in the ECM of chemotherapy-treated mice and patients treated with neoadjuvant chemotherapy. We show that collagen IV drives invasion via Src/FAK signaling and that inhibiting collagen IV-driven signaling decreases invasion in chemotherapy-treated dECM. These studies provide a novel mechanism by which chemotherapy may induce metastasis via effects on ECM composition.One Sentence SummaryChemotherapy alters the extracellular matrix of breast tumors leading to increased invasion of residual cancer cells.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献