A computational solution for bolstering reliability of epigenetic clocks: Implications for clinical trials and longitudinal tracking

Author:

Higgins-Chen Albert T.,Thrush Kyra L.,Wang Yunzhang,Kuo Pei-Lun,Wang Meng,Minteer Christopher J.,Moore Ann Zenobia,Bandinelli Stefania,Vinkers Christiaan H.,Vermetten Eric,Rutten Bart P.F.,Geuze Elbert,Okhuijsen-Pfeifer Cynthia,van der Horst Marte Z.,Schreiter Stefanie,Gutwinski Stefan,Luykx Jurjen J.,Ferrucci Luigi,Crimmins Eileen M.,Boks Marco P.,Hägg Sara,Hu-Seliger Tina T.,Levine Morgan E.

Abstract

AbstractEpigenetic clocks are widely used aging biomarkers calculated from DNA methylation data. Unfortunately, measurements for individual CpGs can be surprisingly unreliable due to technical noise, and this may limit the utility of epigenetic clocks. We report that noise produces deviations up to 3 to 9 years between technical replicates for six major epigenetic clocks. The elimination of low-reliability CpGs does not ameliorate this issue. Here, we present a novel computational multi-step solution to address this noise, involving performing principal component analysis on the CpG-level data followed by biological age prediction using principal components as input. This method extracts shared systematic variation in DNAm while minimizing random noise from individual CpGs. Our novel principal-component versions of six clocks show agreement between most technical replicates within 0 to 1.5 years, equivalent or improved prediction of outcomes, and more stable trajectories in longitudinal studies and cell culture. This method entails only one additional step compared to traditional clocks, does not require prior knowledge of CpG reliabilities, and can improve the reliability of any existing or future epigenetic biomarker. The high reliability of principal component-based epigenetic clocks will make them particularly useful for applications in personalized medicine and clinical trials evaluating novel aging interventions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3