Enhanced lipogenesis through Pparγ helps cavefish adapt to food scarcity

Author:

Xiong Shaolei,Wang Wei,Kenzior Alexander,Olsen Luke,Krishnan Jaya,Persons Jenna,Medley Kyle,Peuß Robert,Wang Yongfu,Chen Shiyuan,Zhang Ning,Thomas Nancy,Miles John M.,Sánchez Alvarado AlejandroORCID,Rohner NicolasORCID

Abstract

AbstractNutrient availability varies seasonally and spatially in the wild. The resulting nutrient limitation or restricted access to nutrients pose a major challenge for every organism. While many animals, such as hibernating animals, evolved strategies to overcome periods of nutrient scarcity, the cellular mechanisms of these strategies are poorly understood. Cave environments represent an extreme example of nutrient deprived environments since the lack of sunlight and therefore primary energy production drastically diminishes the nutrient availability. Here, we used Astyanax mexicanus, which includes river-dwelling surface fish and cave adapted cavefish populations to study the genetic adaptation to nutrient limitations. We show that cavefish populations store large amounts of fat in different body regions when fed ad libitum in the lab. We found higher expression of lipogenesis genes in cavefish livers when fed the same amount of food as surface fish, suggesting an improved ability of cavefish to use lipogenesis to convert available energy into triglycerides for storage into adipose tissue. Moreover, the lipid metabolism regulator, Peroxisome proliferator-activated receptor γ (Pparγ), is upregulated at both transcript and protein levels in cavefish livers. Chromatin Immunoprecipitation sequencing (ChIP seq) showed that Pparγ binds cavefish promoter regions of genes to a higher extent than surface fish. Finally, we identified two possible regulatory mechanisms of Pparγ in cavefish: higher amounts of ligands of the nuclear receptor, and nonsense mutations in per2, a known repressor of Pparγ. Taken together, our study reveals that upregulated Pparγ promotes higher levels of lipogenesis in the liver and contributes to higher body fat accumulation in cavefish populations, an important adaptation to nutrient limited environments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3