Ligands binding to the cellular prion protein induce its protective proteolytic release with therapeutic potential in neurodegenerative proteinopathies

Author:

Linsenmeier Luise,Mohammadi Behnam,Shafiq Mohsin,Frontzek Karl,Bär Julia,Shrivastava Amulya N.,Damme Markus,Schwarz Alexander,Da Vela Stefano,Massignan Tania,Jung Sebastian,Correia Angela,Schmitz Matthias,Puig Berta,Hornemann Simone,Zerr Inga,Tatzelt Jörg,Biasini Emiliano,Saftig Paul,Schweizer Michaela,Svergun Dimitri,Amin Ladan,Mazzola Federica,Varani Luca,Thapa Simrika,Gilch Sabine,Schätzl Hermann,Harris David A.,Triller Antoine,Mikhaylova Marina,Aguzzi Adriano,Altmeppen Hermann C.,Glatzel Markus

Abstract

AbstractThe cellular prion protein (PrPC) is a central player in neurodegenerative diseases caused by protein misfolding, such as prion diseases or Alzheimer’s disease (AD). Expression levels of this GPI-anchored glycoprotein, especially at the neuronal cell surface, critically correlate with various pathomechanistic aspects underlying these diseases, such as templated misfolding (in prion diseases) and neurotoxicity and, hence, with disease progression and severity. In stark contrast to cell-associated PrPC, soluble extracellular forms or fragments of PrP are linked with neuroprotective effects, which is likely due to their ability to interfere with neurotoxic disease-associated protein conformers in the interstitial fluid. Fittingly, the endogenous proteolytic release of PrPC by the metalloprotease ADAM10 (‘shedding’) was characterized as a protective mechanism. Here, using a recently generated cleavage-site specific antibody, we shed new light on earlier studies by demonstrating that shed PrP (sPrP) negatively correlates with conformational conversion (in prion disease) and is markedly redistributed in murine brain in the presence of prion deposits or AD-associated amyloid plaques indicating a blocking and sequestrating activity. Importantly, we reveal that administration of certain PrP-directed antibodies and other ligands results in increased PrP shedding in cells and organotypic brain slice cultures. We also provide mechanistic and structural insight into this shedding-stimulating effect. In addition, we identified a striking exception to this, as one particular neuroprotective antibody, due to its special binding characteristics, did not cause increased shedding but rather strong surface clustering followed by fast endocytosis and degradation of PrPC. Both mechanisms may contribute to the beneficial action described for some PrP-directed antibodies/ligands and pave the way for new therapeutic strategies against devastating and currently incurable neurodegenerative diseases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3