Chlamydia coinfection inhibits HPV-induced safeguards of the cellular and genomic integrity in patient-derived ectocervical organoids

Author:

Koster StefanieORCID,Gurumurthy Rajendra KumarORCID,Berger HilmarORCID,Drabkina Marina,Mollenkopf Hans-JoachimORCID,Goosmann Christian,Brinkmann VolkerORCID,Nagel ZacharyORCID,Mangler MandyORCID,Meyer Thomas FORCID,Chumduri CindrillaORCID

Abstract

AbstractCervical mucosa is continually confronted by coinfections with pathogenic microbes. In addition to human papillomavirus, coinfections with Chlamydia trachomatis have been associated with an increased risk of cervical cancer. However, the dynamics of coinfections, their impact on the epithelia, and their contribution to pathogenesis remain obscure. Using a novel human ectocervical squamous stratified epithelial organoids, we recapitulated the natural infections of the cervix by Chlamydia, HPV, and their coinfections. Towards this, we genetically manipulated the healthy organoids to mimic in vivo HPV persistence by introducing E6E7 oncogenes into the host genome. HPV persistent organoids show enhanced tissue regeneration, increased proliferation and differentiation of stem cells, and nuclear atypia resembling cervical intraepithelial neoplasia grade 1. We found that HPV interferes with normal Chlamydia development. Further, a unique transcriptional host response induced by Chlamydia and HPV leads to distinct reprogramming of host cell processes. Strikingly, in coinfections, Chlamydia impedes HPV-induced mechanisms that maintain cellular and genome integrity, including mismatch repair (MMR). Distinct post-translational proteasomal-degradation and E2F-mediated transcriptional regulation delineate the inverse regulation of MMR during coinfections. Our study employing organoids demonstrates the jeopardy of multiple sequential infection processes and the unique cellular microenvironment they create, accelerating neoplastic progression.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3